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Abstract

Parallel and distributed stochastic algorithms have drawn significant attention in the

realm of big data and machine learning. While the synchronous versions of these algo-

rithms are well understood in terms of their convergence, the convergence analyses of

their asynchronous counterparts are not widely studied. In this paper, we propose and

analyze a distributed, asynchronous parallel algorithm to solve an arbitrary, consistent

linear system by reformulating the system into a stochastic optimization problem as

Richtárik and Takác̃ in [1]. We compare the convergence rates of our asynchronous

algorithm with the synchronous parallel algorithm proposed by Richtárik and Takáč in

[1] under different choices of the hyperparameters—the stepsize, the damping factor,

the number of processors, and the delay factor. We show that our asynchronous parallel

algorithm enjoys a global linear convergence rate, similar to the synchronous parallel

algorithm in [1] under the same setup. We also show that our asynchronous algorithm

improves upon the synchronous algorithm in [1] with a better convergence rate when

the number of processors is larger than four. Furthermore, our asynchronous parallel

algorithm performs asymptotically better than its synchronous counterpart for certain
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linear systems. Finally, we compute the minimum number of processors required for

those systems for which our asynchronous algorithm is better and find that this number

can be as low as two for some ill-conditioned problems.
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asynchronous communication, parallel algorithms, iterative methods
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1. Introduction

Optimization problems have become increasingly complex in big data and machine

learning (ML). Although computers are now more powerful and inexpensive, these

complex problems evaluated on large datasets are challenging to maneuver by a single

processor [2]. In contrast to the traditional optimization algorithms designed to run5

on a single processor, parallel and distributed algorithms can handle large data more

efficiently. To deal with large datasets, parallel algorithms take advantage of multiple

processors. Each processor accesses and processes its data partition in small batches,

called mini-batches, and synchronizes their updates; this process continues until con-

vergence. Shalev-Shwartz et al. [3] in 2007, and Gimpel et al. [4] in 2010 explored10

the mini-batch stochastic algorithms in both the serial and parallel settings. In 2011,

Dekel et al. [5] proposed a distributed mini-batch algorithm (for online predictions)

— a method that converts many serial gradient-based online prediction algorithms

into distributed algorithms with an asymptotically optimal regret bound. However,

the synchronous parallel algorithms tend to slow down in a distributed setting due to15

unpredictable communication faults, network latency [6], and processors with different

processing speeds [7].

Asynchronous algorithms were first introduced by Chazan and Miranker on chaotic

relaxation in 1969 [8] (also, see Frommer and Szyld [9], and [10]), and recent research

shows they can remedy the slowdown of synchronous parallel algorithms. Processors20

with different processing speeds and storage capacities perform updates without syn-

chronizing with others in asynchronous algorithms. However, the inherent dynamics of

asynchronous algorithms are challenging compared to their synchronous counterparts,
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and their convergence analyses are much more mathematically involved. In the liter-

ature, the comparisons between the convergence rates of the asynchronous algorithms25

and their synchronous counterparts are less understood. This paper aims to understand

the convergence rates of the asynchronous and synchronous algorithms in a relatively

simple setup to solve an arbitrary, consistent linear system. Before discussing the prob-

lem formulation, setup, and contribution, we start with a brief overview of stochastic

optimization.30

Stochastic optimization. In modern ML and data-fitting applications, stochastic opti-

mization is a broadly studied field. Consider the stochastic optimization problem:

min
x∈Rn

f(x) = min
x∈Rn

ES∼D[fS(x)], (1)

where D is a distribution and S is a random sample drawn from the distribution. In

supervised ML, (1) is refer to empirical risk minimization (ERM) problem:

min
x∈Rn

[f(x) =

n∑
i=1

1

n
ESi∼Di [fSi(x)︸ ︷︷ ︸

:=fi(x)

]], (2)

where fi(x)’s are instantiated by different distributions Di and Si is sampled from Di.35

In the distributed setting, n in the ERM problem denotes number of processors/work-

ers. Therefore, (2) is important from the distributed deep learning perspective as it

captures data-parallelism (distributed over n processors, e.g., GPUs/CPUs/TPUs, etc.).

One of the most popular algorithms for solving (1) is the stochastic gradient descent

(SGD) [11]. For a given sequence of stepsize parameters, {ωk} with ωk > 0, and the40

sequence of iterates, {xk}, the updates of SGD take the form

xk+1 = xk − ωk∇fSk(xk), (3)

where ∇fSk(xk) is the stochastic gradient arising from the sample, Sk ∼ D drawn in

each iteration and is an unbiased estimator of the gradient of f . A natural direction for

solving (1) is to design a synchronized parallel update by using SGD [12]. If more than

one processors are available, then they can work simultaneously and each one of them45

can calculate a stochastic gradient independent of the other processors. At the end, the
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user can average the stochastic gradients from all processors to obtain the update as

xk+1 = xk −
ωk
τ

τ∑
i=1

∇fSki(xk), (4)

where∇fSki(xk) is the stochastic gradient arising from the independent sample, Ski ∼

D from each of the τ processors and ωk > 0 is a uniform stepsize across kth iteration.

Note that, if τ = 1, then the update scheme in (4) is (3).50

In this paper, we compare the convergence rates of the asynchronous and syn-

chronous algorithms in solving any arbitrary consistent linear systems by reformulating

them into stochastic optimization problems. In the following section, we introduce the

stochastic reformulation of a linear system.

1.1. Stochastic reformulation of a linear system55

In [1], Richtárik and Takáč reformulated any arbitrary consistent linear system into

a stochastic optimization problem (see details in [1, 13]; also [14]). Consider a linear

system:

Ax = b, (5)

where A ∈ Rm×n and A 6= 0. Let the set of solutions L := {x : Ax = b} be

non-empty. That is, we consider a consistent linear system that has a solution which is60

not necessarily unique. Richtárik and Takáč, reformulated (5) into different stochastic

problems and showed that for any arbitrary consistent linear system, the stochastic

reformulations of (5) are exact. In other words, the set of the solutions of any of

those equivalent stochastic formulations is exactly the same as L— which is formally

defined as the exactness assumption; see Assumption 1 in Section 2. To motivate65

further, we will now introduce some technicalities. For a symmetric positive definite

matrix B, denote 〈· , ·〉B as the B-inner product and let ‖x‖B =
√
x>Bx be the norm

induced by it. Therefore, by using the idea proposed in [1], one can define a stochastic

function, fS(x) := 1
2‖Ax − b‖

2
H, where H = S(S>AB−1A>S)†S> is a random,

symmetric, and positive definite matrix. Minimizing (1) with fS(x) = 1
2‖Ax − b‖

2
H70
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Figure 1: The above example demonstrates the setting to compare between our asynchronous parallel

SGD (APSGD) and synchronous parallel SGD (SPSGD) proposed by Richtárik and Takáč in [1]. The

depicted system consists of three processors (τ = 3) with varying processing power, each denoted with

a different color—slowest processor is in red. For APSGD, when the slowest processor can perform one

update, the faster blue and green processors are able to perform three additional updates. With a maximum

delay of δ = 6, the faster processors wait for the red processor to perform its update before proceeding

further. In contrast, SPSGD, at the same time, performs one update. After computing the gradient, the faster

blue and green processors wait for gradient aggregation with the slower red processor.

solves (5) 1. The basic method in [1] is the central algorithm whose iterates are SGD

steps with a fixed stepsize parameter, ω > 0 (see (3)) applied to solve (1) with fS(x) =

1
2‖Ax− b‖

2
H. Therefore, the iterates of the basic method are:

xk+1 = xk − ωB−1A>Sk(S>kAB−1A>Sk)†S>k (Axk − b), (6)

where Sk is sampled from the distribution, D in each iteration. The synchronous par-

allel SGD (SPSGD) algorithm in [1] is an extension of the basic method applied to75

a synchronous system with τ processors. The user averages the total yield from all

processors at the end; see details in Section 2.1.

1In order to solve (5) via minimizing (1), one only needs local information of the stochastic function

fS(x), for example, the stochastic gradient∇fS(x) without any explicit access to the function, its gradient,

or the Hessian.
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1.2. Contribution

In this paper, we solve (1) with fS(x) = 1
2‖Ax − b‖2H 2 in a distributed asyn-

chronous setup. We consider the abstraction with a central master server and τ inde-80

pendent workers, where the master obtains the gradients from the workers with a delay.

We follow the framework of the basic method proposed by Richtárik and Takáč [1] to

design our asynchronous SGD, and our algorithm is related to Hogwild! of Recht et

al. [7] and the delayed proximal gradient algorithm of Feyzmahdavian et al. [15]. In a

shared-memory model with τ independent workers, our algorithm updates the model,85

x that is accessible to all workers. Each worker can contribute an update to the model,

although they can be of different processing speeds. Therefore, whenever a worker

computes a stochastic gradient at x, it performs an SGD update, y at that point and

communicates it to the master. The master eventually experiences a delay and updates

the final model state, x by using a convex combination of its current update of the90

model, x available, and the SGD update, y that was communicated with a delay, and

assigns the final model state to the available worker. We explain the algorithm formally

in Section 3. The following are our main contributions in this paper:

• Inspired by SPSGD in [1], we design an asynchronous parallel SGD (APSGD)

to solve a consistent linear system; see Algorithm 1 in Section 3.95

• We propose a detailed convergence analysis of our APSGD algorithm in Section

4. The convergence analysis of our proposed APSGD is a standalone result that

can handle any variable delay, δt bounded by a maximum delay, δ. See The-

orem 4 and Theorem 5. Moreover, our convergence analysis does not require

any stronger assumption such as sparsity as in Mania et al. [16] and Leblond et100

al. [17]. We refer to Table 1 for a quick overview of these results. For a detailed

analysis, see Section 4.

• We compare the convergence rates and the iteration complexities of APSGD and

SPSGD in Section 5. At this end, we assume time equivalence between one iter-

2stochastic reformulation of the linear system (5)
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Algorithm Quantity Case ω θ τ Complexity Reference

1 θ1 τ ξa(1,δ)

λ+
min

APSGD E[‖xt − x?‖2B] ω? ≤ 2 1 θ1 ∞ 3
4λ+

min

This paper

ω? θω? τ ξa(ω
?,δ)

λ+
min

Theorem 4

ω? θω? ∞ 3λ+
min+λmax

4λ+
min

APSGD E[‖xt − x?‖2B] ω? ≥ 2 2 θ2 τ ξa(2,δ)

λ+
min

This paper

2 θ2 ∞ 1+2λ+
min

4λ+
min

Theorem 5

1 - τ 1
(2−ξs(τ))λ+

min

[1]

SPSGD E[‖xt − x?‖2B] ω ∈ (0, 2/ξs(τ)) 1/ξτ - τ ξs(τ)

λ+
min

[1]

1/λmax - ∞ λmax

λ+
min

[1]

Table 1: Iteration complexities of APSGD and SPSGD or parallel basic method. Here “Com-

plexity” denotes the number of iterations required to make “Quantity” smaller than an error

tolerance ε > 0, where we suppress a log(1/ε) factor in all expressions in the “Complex-

ity” column. All the results are for maximum delay, δ = cτ for some c ≥ 1. Addition-

ally, the complexity results of APSGD are normalized by δ—inline with our setting in Section

5 (see Figure 1). For APSGD, we have, ξa(1, δ) := 3
4
+

1+
√

1+2δ(1−λ+
min)

4δ
, ξa(ω?, δ) :=

3λ+
min+λmax

4
+

√
1+δ(2−k)+2(δ+1+δ(1−k)λ+

min)

2δ
√

1+δ(2−k)
and ξa(2, δ) := 1

4
+

λ+
min
2

+ 1+
√
δ+1

2δ
, where

k = λ+
min + λmax and c ≥ 1. We also have, θ1 :=

√
1+2δ(1−λ+

min)−1

δ(1−λ+
min)

, θ2 :=
√
δ+1−1
δ

, and

θω? :=
k(
√

1+δ(2−k)−1)

δ(2−k) . For parallel SGD, we have ξs(τ) := 1
τ
+

(
1− 1

τ

)
λmax.

ation of APSGD and δ iterations of SPSGD; see Figure 1. We find that asymp-105

totically as the number of processors, τ approaches to∞, APSGD has a better

iteration complexity than SPSGD for certain linear systems—These are conse-

quences of Theorem 4 and Theorem 5. Moreover, for such linear systems, we

also compute the minimum number of processors such that APSGD has a better

iteration complexity than the synchronous method, and find that this number can110

be as low as 2 for some (highly ill-conditioned) problems; see Table 2 and 3.
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1.3. Distributed optimization—Related work

Parallel and distributed stochastic optimization algorithms broadly fall into two

classes: (i) centralized (that follows a master-worker architecture) and (ii) decentral-

ized (e.g., Allreduce communication collective in the message passing interface115

(MPI) [18]), based on their communication protocol. This paper follows the central-

ized setup where a central master node coordinates with all the worker nodes. De-

pending on the update rule, centralized algorithms can be further categorized into (i)

synchronous and (ii) asynchronous algorithms. We will quote a few representatives of

each category for completeness.120

Among the first works, Zinkevich et al. [12] proposed and analyzed synchronous

parallel SGD. Richtárik and Takáč in [19] showed by parallelizing, randomized block

coordinate descent methods can be accelerated. Yang [20] proposed a distributed stochas-

tic dual coordinate ascent algorithm in a star-shaped distributed network and analyzed

the trade-off between computation and communication. Similarly, Jaggi et al. [21]125

proposed Communication-efficient distributed dual Coordinate Ascent or COCOA (we

refer to the references in [21, 22] for distributed primal-dual methods; additionally,

see [23] for application to distributed model predictive control). Fercoq and Richtárik

in [24] proposed Accelerated Parallel PROXimal method (APPROX)—a unison of

three ideas—acceleration, parallelization, and proximal method. In [25], Richtárik and130

Takáč proposed and analyzed a hybrid coordinate descent method known as HYDRA

that partitions the coordinates over the nodes, independently from the other nodes, and

applies updates to the selected coordinates in parallel (see [26, 27] and HYDRA-2 [28]

for more insights). Shamir et al. [29] proposed a distributed approximate Newton-type

method or DANE in a similar line of work.135

Synchronous data-parallelism [30] is widely adopted in practice, e.g., training large

deep neural networks (DNNs) using mainstream deep learning toolkits. In a constant

speed network, reduced data volume translates to a faster training [6, 31]—based on

this, gradient compression techniques (see [32, 6, 33, 34], and references therein) are

used to train large DNN models in a distributed, synchronous setup. However, these140

techniques are orthogonal to our discussion, and we refer interested readers to [6] for a

comprehensive survey and quantitative evaluation of them.
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Although synchronous stochastic algorithms are well explored regarding their con-

vergence rates, acceleration, and parallelization [35, 36], they may suffer from memory

locking. The computing nodes need to wait for the update from the slowest node. Hog-145

wild! by Recht et al. [7] is the first asynchronous SGD that does not use the memory

locking, and as a result, the computing nodes can modify the parameters at the same

time. De Sa et al. [37] proposed Buckwild! which is a low-precision asynchronous

SGD. Additionally, [37] analyzed Hogwild! type algorithms with relaxed assumptions;

also see [38]. Noel et al. [39] proposed Dogwild!—a distributed Hogwild! algorithm150

for CPU and GPU. Chaturapruek et al. [40] showed that for convex problems, under

similar conditions as regular SGD, asynchronous SGD achieves a similar asymptotic

convergence rate. The perturbed iterate analysis of Mania et al. [16] and Leblond et

al. [17] has emerged as a promising technique for analyzing asynchronous algorithms,

with applications to distributed optimization with compressed gradients and local SGD155

[41]. While the initial perturbed iterate analyses depend on a gradient sparsity assump-

tion [16, 17], the latter overcomes this [41].

Asynchronous parallel SGD algorithms are also highly deployed in practice. Re-

cently, Lian et al. [42] studied two asynchronous parallel algorithms—one is over a

computer network, and another is on a shared memory system. They claimed that in160

their setting, proposed asynchronous parallel algorithms could achieve a linear speedup

if the number of workers is bounded by the square root of the total number of itera-

tions. In 2017, Zheng et al. [43] proposed an algorithm called delay compensated

asynchronous SGD (DC-ASGD) for training deep neural networks, which compen-

sates for the delayed gradient updates by using approximate Hessian information. With165

experimental validity on deep neural networks, [43] claimed that DC-ASGD outper-

forms both synchronous SGD and asynchronous SGD, and nearly approaches the per-

formance of sequential SGD.

Among the others, asynchronous algorithms by Aytekin et al. [44], distributed

SDCA by Ma et al. [45], distributed SVRG by Lee et al., [46] and Zhao and Li [47],170

asynchronous parallel SAGA by Leblond et al. [17], proximal asynchronous SAGA by

Pedregosa et al. [48], decentralized asynchronous parallel SGD by Lian et al. [49] are

to name a few. We refer to [50, 51] for an in-depth understanding.
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Notation. We provide a table of the most frequently used notation in this paper; see

6. Here we include some basic notations. We write the matrices in bold uppercase175

letters and denote vectors and scalars by lowercase letters. We define the range space

and null space of a matrix A ∈ Rm×n as Im(A) := {y ∈ Rm : y = Ax}, and

N(A) := {x ∈ Rn : Ax = 0}, respectively. We further define the Euclidean inner

product as 〈·, ·〉, and for a symmetric positive (semi)-definite matrix B, we denote

〈·, ·〉B as the B-inner product, and define ‖x‖B =
√
x>Bx as the (semi)-norm induced180

by it. By ‖x‖ and ‖x‖∞, we denote the `2 and `∞ norm of a vector, x, respectively.

Organization. In Section 2, we review some key results related to the stochastic refor-

mulation of linear systems and describe SPSGD by Richtárik and Takáč, in [1]. Next

in Section 3, we propose APSGD and present its convergence analysis in Section 4.

Finally, we compare the convergence rates of APSGD with SPSGD in Section 5.185

2. Stochastic reformulation of a linear system: A few key results

In addition to Section 1.1, we quote some results from [1, 13] without their proofs.

These results are used to establish our main results. Let

Z = ZS := A>S(S>AB−1A>S)†S>A,

and E[Z] := ES∼D[Z] be such that D is a user-defined distribution and S be a random

matrix drawn from D. Let B be a n × n symmetric positive definite matrix. Define

W := B−
1
2E[Z]B−

1
2 , and let W = UΛU> be a eigenvalue decomposition of W,

where U>U = UU> = I, and Λ = diag(λ1, λ2, . . . , λn) is a diagonal matrix with190

eigenvalues, 0 ≤ λi ≤ 1 arranged in a non-increasing order. We denote λmax = λ1 as

the largest, and λ+min as the smallest non-zero eigenvalue of W. We start by defining

the exactness assumption.

Assumption 1 (Assumption 2 in [1]). (Exactness) LetX = arg minx∈Rn f(x) = {x :

f(x) = 0} = {x : ∇f(x) = 0}. We assume X = L.195

By x? = ΠB
L (x0) we denote x? to be the projection of the initial iterate x0 onto the

set L in B-norm and quote the following results.
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Remark 1. For x? ∈ L, the gradient and Hessian of f are∇f(x) = B−1E [Z](x−x?)

and ∇2f(x) = B−1E [Z], respectively.

Lemma 1 (Lemma 4.7 in [1]). For all x ∈ Rn, x? ∈ L and for a given S we have

‖x−x?−ω∇fS(x)‖2B = ‖(I−ωB−1Z)(x−x?)‖2B = ‖x−x?‖2B−2ω(2−ω)fS(x).

(7)

Lemma 2 (Lemma 4.2 in [1]). For all x ∈ Rn and x? = ΠB
L (x) we have λ+

min

2 ‖x −200

x?‖2B ≤ f(x) ≤ λmax

2 ‖x− x?‖
2
B.

Lemma 3 (Lemma 4.5 in [1]). Consider any x ∈ Rn and x? = ΠB
L (x). If λi = 0 then

we have u>i B
1/2(x− x?) = 0.

2.1. Synchronous parallel SGD (SPSGD) [1]

In this section, we describe the parallel basic method, also known as synchronous

parallel SGD (SPSGD) by Richtárik and Takáč. Let there be τ processors working

independently. Starting from a given iterate, xk, SPSGD performs one step of the basic

method independently on each of the τ processors, and finally averages the results. This

leads to the update rule of SPSGD as follows:

xk+1 =
1

τ

τ∑
i=1

zk+1,i, (8)

where zk+1,i = xk − ωB−1A>Ski(S>kiAB−1A>Ski)
†S>ki(Axk − b). Note that, in205

each iterate an independent sample, Ski ∼ D drawn for each of the τ processors and

ω > 0 is a fixed stepsize parameter. SPSGD enjoys a linear convergence rate under the

exactness assumption; see Theorem 1.

Theorem 1 (Convergence of SPSGD [1]). Let the exactness assumption hold and x? =

ΠB
L (x0). Let {xk}k≥0 be the sequence of random iterates produced by the parallel210

method (see (8)) where the stepsize ω ∈ (0, 2/ξs(τ)), such that ξs(τ) = 1
τ + (1 −

1
τ )λmax. Then

E[‖xk+1 − x?‖2B] ≤ βs(ω, τ)k
λmax

2
‖x0 − x?‖2B, (9)

where

βs(ω, τ) = 1− ω(2− ωξs(τ))λ+min. (10)

11



Richtárik and Takáč [1] further showed that the convergence rate, βs(ω, τ) is min-

imized for ω(τ) = 1/ξs(τ) and the optimal βsopt(ω(τ), τ) is215

βsopt
(ω(τ), τ) = 1− λ+min

1
τ +

(
1− 1

τ

)
λmax

. (11)

With this optimal rate, βsopt(ω(τ), τ), let the corresponding optimal iteration complex-

ity of SPSGD is χsopt(τ). If

k ≥ χsopt(τ) log
1

ε
, then E

[
‖xk − x?‖2B

]
≤ ε‖x0 − x?‖2B, (12)

where χsopt(τ) =
1
τ+(1− 1

τ )λmax

λ+
min

.

Remark 2. The best strong convergence rate for the basic method (SPSGD with τ = 1)

is achieved when the stepsize parameter, ω = 1. We define the strong convergence in

Section 4.2.

3. Asynchronous parallel SGD (APSGD)220

Let there be τ independent processors or workers and a central server or the mas-

ter (see Section 1) and we perform the iterative updates in an asynchronous manner.

Whenever a worker computes a stochastic gradient at a given point, it performs an SGD

step at that point and communicates the update to the master. After that, the master

generates a new update by using a convex combination of its current update, and the225

update reported to it by the worker, and communicates back the resulting update to the

worker to perform the next SGD step, and this process continues. Regardless of their

processing speeds, whenever a worker communicates its latest update to the master,

the master makes a convex combination of the latest iterate with it and assigns it to

the worker to perform an SGD step. Therefore, no worker stays idle. Each worker230

performs and communicates the task they are assigned to the master, albeit in an asyn-

chronous way. Feyzmahdavian et al. introduced this protocol in [15], and our proposed

update rule is inspired by it.

Let t denote the iteration count with respect to the master’s frame. Let δt be a

function of t such that δt ≥ 0 and represents the delay between the iterates of the235

master and the workers, which varies in each iteration. Let δ be the maximum delay

12



throughout the execution of the algorithm. Let θ ∈ [0, 1] be a damping factor. Choose

initial approximate, x0 ∈ Rn, and consider an update rule defined for t ≥ 1 as:

yt = xt−δt − ω∇fSt−δt (xt−δt), (13)

xt+1 = (1− θ)xt + θyt. (14)

Recall from Remark 1 that∇fS(x) = B−1Z(x− x?), where x? is any solution of the

system, Ax = b. Therefore, we can rewrite the update rule as:

xt+1 − x? = (1− θ)(xt − x?) + θ(I− ωB−1Zt−δt)(xt−δt − x?), (15)

where we denote Zt := ZSt , and St is sampled independently from D. We refer to

Algorithm 1 for the numerical procedure.240

Algorithm 1: Asynchronous Parallel SGD (APSGD) in master-worker archi-

tecture (time t in master’s frame)
System : 1 Master and τ workers, k = 1, ....., τ ;

1 repeat

2 Master :

3 Receive yt from a worker k;

4 Update current iterate xt by using equation (14);

5 Send updated iterate xt+1 to worker k;

6 Workers:

7 Receive iterate xt from master;

8 Compute yt+δt via equation (13);

9 Send yt+δt to the master;

until convergence;

4. Convergence analysis

For APSGD, we study the convergence of the quantity, E
[
‖xk − x?‖2B

]
. Richtárik

and Takáč [1] refer this as strong convergence. We omit convergence of the quantity,

‖E [xk − x?]‖2B, defined as weak convergence in [1], as this is directly implied from the

strong convergence result. Nevertheless, in practice, only strong convergence matters.245
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4.1. Overview of analysis

Let pt = E
[
‖xt − x?‖2B

]
. In the analysis, we handle the following recurrence

relation

pt+1 ≤ a pt + b pt−δt , for all t ≥ 0, (16)

where a ≥ 0, b ≥ 0, and a + b < 1; see Theorem 2 for this result. We present the

recurrence relation (16) in the following form:

ut+1 ≤ Aδtut, (17)

where ut = (pt pt−1 · · · pt−δ)>, and Aδt ∈ R(δ+1)×(δ+1) is a state transition matrix,

such that Aδt =

 [a 0>δt−1] b [0>δ−δt ]

Iδ 0δ

. Note that, 0n is a vector in Rn with250

all zeros, and In ∈ Rn×n is the n× n identity matrix.

The characteristic equation of the matrix, Aδt is:

γδt+1 − aγδt − b = 0. (18)

This is true for any time-varying delay, δt. Moreover, for the special case, when δt = δ,

it will reduce to,

γδ+1 − aγδ − b = 0. (19)

The spectral radius of Aδt is the magnitude of the largest root of the characteristic

polynomial in (18). We first show that the largest magnitude root is the only positive

root of (18); see our discussion in Section 4.3.1. We then show in Lemma 5 that the

rate of convergence of (16) is given by the spectral radius, ρ, of the matrix, Aδ , that is,

pt+1 ≤ ρmax(pt, ρpt−1, . . . , ρ
δpt−δ). (20)

Since ρ cannot be explicitly derived, we determine a β ∈ [0, 1) as an algebraic upper

bound of this positive root; see Lemma 6 in Section 4.4.1. Thus, if the maximum delay

for APSGD is δ, then by unrolling the recurrence in (20), one can have

pt+1 ≤ βt−δ+1 max(pδ, βpδ−1, . . . , β
δp0). (21)

Finally, in Section 4.5 we analyze the rate of convergence and the optimal iteration

complexity of APSGD under varying stepsize, ω, damping parameter, θ, and maximum

delay, δ and record our findings in Theorem 4 and Theorem 5.
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4.2. Preliminaries255

We start with the following Lemma.

Lemma 4. Assume that x0 ∈ Im(B−1A>). Then xt ∈ Im(B−1A>) for all t. It

follows that ΠB
L (xt) = ΠB

L (x0) for all t.

Proof. The first part follows from (15). The second part follows from the observation

that Im(B−1A>) is the B-orthogonal complement of the nullspace of A.260

4.2.1. Two scenarios based on the relative position of ω? and 2

Let ω? = 2
(λ+

min+λmax)
. According to the problem, there are two scenarios based on

the relative position of ω? with respect to 2 as follows:

Case 1: ω? ≤ 2 that is λ+min + λmax ≥ 1.

265

0 1 2ω?

Case 2: ω? ≥ 2 that is λ+min + λmax ≤ 1.

0 1 2 ω?

Definition 1. Define α(ω) := maxi:λi>0 |1− ωλi|. It is easy to see that

α(ω) =

1− ωλ+min, if 0 ≤ ω ≤ ω?

ωλmax − 1, if ω ≥ ω?.

4.3. Recurrence relation270

The following theorem establishes a recurrence relation required to analyze the

strong convergence of APSGD Algorithm (see Algorithm 1).

Theorem 2 (Recurrence). Assume exactness. Assume that x0, . . . , xδ ∈ Im(B−1A>)

and let x? = ΠB
L (x0). Let {xt} be the sequence of random iterates produced by the

asynchronous method (via (15)) with delay δt ≥ 0, stepsize ω ≥ 0, and damping275

parameter θ ∈ [0, 1]. Let rt = B1/2(xt−x?) and α(ω) := maxi:λi>0 |1−ωλi|. Then

E[‖rt+1‖2] ≤ K1(θ, ω)E[‖rt‖2] +K2(θ, ω)E[‖rt−δt‖2], (22)

15



with the following estimates of K1(θ, ω) and K2(θ, ω):

Case 1:

(i) For ω ≤ ω? ≤ 2 and α(ω) = 1− ωλ+min:

280

0 2ω?ω

K1(θ, ω) := (1−θ)(1−θ+θα(ω)), K2(θ, ω) := θ(θ(1−ω(2−ω)λ+min)+(1−θ)α(ω)).

(23)

(ii) For ω? ≤ ω ≤ 2 and α(ω) = ωλmax − 1:

0 21 ω? ω

K1(θ, ω) := (1−θ)(1−θ+θα(ω)), K2(θ, ω) := θ(θ(1−ω(2−ω)λ+min)+(1−θ)α(ω)).

(iii) For ω ≥ 2 and α(ω) = ωλmax − 1:285

0 21 ω? ω

K1(θ, ω) := (1−θ)(1−θ+θα(ω)), K2(θ, ω) := θ(θ(1−ω(2−ω)λmax)+(1−θ)α(ω)).

Case 2:

(i) For ω ≤ 2 ≤ ω? and α(ω) = 1− ωλ+min:

290

0 2 ω?ω

K1(θ, ω) := (1−θ)(1−θ+θα(ω)), K2(θ, ω) := θ(θ(1−ω(2−ω)λ+min)+(1−θ)α(ω)).

(24)

16



(ii) For 2 ≤ ω ≤ ω? and α(ω) = 1− ωλ+min:

0 2 ω?ω

K1(θ, ω) := (1−θ)(1−θ+θα(ω)), K2(θ, ω) := θ(θ(1−ω(2−ω)λmax)+(1−θ)α(ω)).

(25)

(iii) For ω ≥ ω? and α(ω) = ωλmax − 1:295

0 2 ω? ω

K1(θ, ω) := (1−θ)(1−θ+θα(ω)), K2(θ, ω) := θ(θ(1−ω(2−ω)λmax)+(1−θ)α(ω)).

Proof. We hereby provide the proof for ω ∈ [0, 2]. The proof for ω ≥ 2 follows

similarly by using Lemma 2 in (26).

By taking norms on both sides of (15) and then applying Lemma 1, we get300

‖xt+1 − x?‖2B
(15)
= (1− θ)2‖xt − x?‖2B + θ2‖(I− ωB−1Zt−δt)(xt−δt − x?)‖2B

+2(1− θ)θ〈xt − x?, (I− ωB−1Zt−δt)(xt−δt − x?)〉B
Lemma 1

= (1− θ)2‖xt − x?‖2B + θ2‖xt−δt − x?‖2B − 2ω(2− ω)θ2fSt−δt (xt−δt)

+2(1− θ)θ〈xt − x?, (I− ωB−1Zt−δt)(xt−δt − x?)〉B.

The above identity can be written as

‖rt+1‖2 = (1− θ)2‖rt‖2 + θ2‖rt−δt‖2 − 2ω(2− ω)θ2fSt−δt (xt−δt)

+2(1− θ)θ〈rt, (I− ωB−1/2Zt−δtB−1/2)rt−δt〉.

Conditioning on xt, . . . , x0, the only free random variable is St−δt . Therefore, in view

of Lemma 2 and using the eigenvalue decomposition B−1/2E[Z]B−1/2 = UΛU>,

we get the following bound on C := E
[
‖rt+1‖2 | xt, . . . , x0

]
:

C = (1− θ)2‖rt‖2 + θ2‖rt−δt‖2 − 2ω(2− ω)θ2f(xt−δt) + 2(1− θ)θr>t (I− ωB−1/2E[Z]B−1/2)rt−δt
Lemma 2
≤ (1− θ)2‖rt‖2 + θ2(1− ω(2− ω)λ+min)‖rt−δt‖2 + 2(1− θ)θ r>t (I− ωUΛU>)rt−δt︸ ︷︷ ︸

D

. (26)

17



Further, we have305

D = r>t (I− ωUΛU>)rt−δt

= (U>rt)
>(I− ωΛ)U>rt−δt

=
∑
i

(1− ωλi)u>i rtu>i rt−δt

Lemmas 3 and 4
=

∑
i:λi 6=0

(1− ωλi)u>i rtu>i rt−δt

≤
∑
i:λi 6=0

|1− ωλi||u>i rtu>i rt−δt |

≤ α(ω)
∑
i:λi 6=0

|u>i rtu>i rt−δt |

(Cauchy-Schwarz)
≤ α(ω)‖rt‖‖rt−δt‖

(AM-GM)
≤ α(ω)

2

(
‖rt‖2 + ‖rt−δt‖2

)
.

Combining the bounds on C and D, we get

C ≤ (1− θ)2‖rt‖2 + θ2(1− ω(2− ω)λ+min)‖rt−δt‖2 + (1− θ)θα(ω)
(
‖rt‖2 + ‖rt−δt‖2

)
=

[
(1− θ)2 + (1− θ)θα(ω)

]
‖rt‖2

+
[
θ2(1− ω(2− ω)λ+min) + (1− θ)θα(ω)

]
‖rt−δt‖2. (27)

The final result is obtained after we take full expectation and apply the tower property

of expectation.

Remark 3. To analyze the convergence of the recurrence relation in (22), we can

replace the inequality in (22) with equality and write

qt+1 = K1(θ, ω)qt +K2(θ, ω)qt−δt , (28)

where we initialize the process by setting qt = E
[
‖xt − x?‖2B

]
for t ∈ {0, . . . , τ}. It

can be proved by using induction that E
[
‖xt − x?‖2B

]
≤ qt for all t, and hence the310

convergence rate of E
[
‖xt − x?‖2B

]
will not be slower than qt.

Note that, (28) follows recurrence (16) with a = K1(θ, ω) and b = K2(θ, ω). There-

fore, we represent (28) in the form of (17). In the following, we examine the charac-

teristic polynomial of the state transition matrix.

18



4.3.1. Characteristic polynomial315

From (18), the characteristic polynomial of the state transition matrix, Aδt , of re-

currence (28) is

pδ(γ) := γδt+1 −K1(θ, ω)γδt −K2(θ, ω). (29)

For convenience, we denote K1 = K1(θ, ω) and K2 = K2(θ, ω), from now on. The

spectral radius is the largest magnitude root of (29). We quote the following result on

the bounds of the root of a polynomial

Theorem 3. (Cauchy [52]) Let f(x) = xn −
∑n
i=1 bix

n−i be a polynomial, where

all the coefficients, bi’s are non-negative and at least one of them is nonzero. The320

polynomial f(x) has a unique (simple) positive root p and the absolute values of the

other roots do not exceed p.

By using Theorem 3 we can conclude that the unique positive root of (29) is the

spectral radius of (29).

Remark 4. The spectral radius is smaller than 1 only when K1 + K2 < 1, as pδ(1)325

is positive for the root to be smaller than 1. If K1 + K2 ≥ 1, then either the spectral

radius is not a good bound for the one-step rate of convergence or the algorithm does

not converge.

4.4. Convergence of the recurrence relation

The following lemma states that the rate of convergence is determined by calculat-330

ing the spectral radius of this state transition matrix.

Lemma 5. The rate of convergence of the recurrence in (16) is given by the spectral

radius, ρ, of the state transition matrix, Aδ .

335

Proof. Let D = diag(1, ρ, ρ2, . . . , ρδ) ∈ R(δ+1)×(δ+1) be a diagonal matrix. Then,

DAδtD
−1 =

 [a 0>δt−1] bρ−δt [0>δ−δt ]

ρIδ 0δ

 .
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Notice the first row of DAδtD
−1 has entries a and bρ−δt , and the characteristic equa-

tion of Aδ , that is, equation (19) gives, a + bρ−δ = ρ. Since 0 < ρ < 1 (Remark 4)

and a, b ≥ 0, this implies, ρ ≥ a + bρ−δt for any 0 < δt < δ. The remaining rows of

DAδtD
−1 have one ρ, and all the other entries zero. Hence,

∥∥DAδtD
−1
∥∥
∞ ≤ ρ for

all 0 ≤ δt ≤ δ. So if ut+1 = Aδtut, we have, ‖Dut+1‖∞ =
∥∥DAδtD

−1Dut
∥∥
∞ ≤

ρ‖Dut‖∞. This gives

pt+1 ≤ max(pt+1, ρpt, . . . , ρ
δpt−δ+1) ≤ ρmax(pt, ρpt−1, . . . , ρ

δpt−δ). (30)

Hence the result.

4.4.1. Bounding polynomial for the characteristic polynomial

In light of Lemma 5, we need to focus only on δt = δ. Finding a closed form

analytic expression for the unique positive root of (29) is hard. Therefore, we find a

polynomial that bounds pδ(γ) on the interval [0, 1]. This provides us with an upper340

bound on the spectral radius and we use this upper bound as the convergence rate of

APSGD.

Lemma 6. The polynomial,

gδ(γ) :=

(
1 +

1

δ
−K1

)
γδ −

(
K2 +

1

δ

)
, (31)

bounds the characteristic polynomial pδ(γ) from below on [0, 1] and its root

β(θ, ω, δ) =

(
K2 + 1

δ

1−K1 + 1
δ

) 1
δ

(32)

is an upper bound to the unique positive root of pδ(γ).

Proof. We have

pδ(0) ≥ gδ(0) and pδ(1) = gδ(1).

Let qδ(γ) = pδ(γ) − gδ(γ) then qδ(γ) = γδ+1 −
(
1 + 1

δ

)
γδ + 1

δ , and q′δ(γ) =

(δ + 1) (γ − 1)γδ−1 ≤ 0 for all γ ∈ [0, 1]. Therefore, for all γ ∈ [0, 1], we have345

qδ(γ) ≥ qδ(1), which implies qδ(γ) ≥ 0. Thus, pδ(γ) − gδ(γ) ≥ 0 for all γ ∈ [0, 1].

Therefore, the root of gδ(γ), β(θ, ω, δ) =
(

K2+
1
δ

1−K1+
1
δ

) 1
δ is an upper bound to the

unique positive root of the characteristic polynomial pδ(γ).
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4.5. Convergence results

From now on, we denote β(θ, ω, δ) as the rate of convergence of APSGD with

stepsize ω, damping parameter θ, and maximum delay δ. From (32) we have

β(θ, ω, δ) =

(
K2 + 1

δ

1−K1 + 1
δ

) 1
δ

. (33)

Let βaopt
denote the rate of convergence of APSGD with optimally tuned θ and ω. That

is,

βaopt(δ) = min
θ,ω

(
K2 + 1

δ

1−K1 + 1
δ

) 1
δ

. (34)

Let

Pδ = max
(
‖xδ − x?‖2B, βaopt(δ)‖xδ−1 − x?‖2B, . . . , βaopt(δ)δ‖x0 − x?‖2B

)
. (35)

Then, we obtain the following convergence guarantee

E
[
‖xT − x?‖2B

]
≤ βaopt(δ)T−δPδ.

We define,

χaopt(δ) :=
δ

1− (βaopt)
δ
≥ δ

log
(
β−δaopt

) =
1

log
(
β−1aopt

) . (36)

such that if

T − δ ≥ χaopt(δ) log

(
1

ε

)
, then this implies E

[
‖xT − x?‖2B

]
≤ εPδ. (37)

Plugging (34) in (36), we have

χaopt(δ) = δ ·min
θ,ω

(
1−K1 + 1

δ

1−K1 −K2

)
. (38)

Denote

U(θ, ω) =
1−K1 + 1

δ

1−K1 −K2
. (39)

Therefore,

χaopt(δ) = δ ·min
θ,ω

U(θ, ω). (40)

Note that, the above expression forU(θ, ω) is feasible only whenK1+K2 < 1. We350

now only remain to optimize for U(θ, ω) to derive our convergence result. In the next

Section we show that we can find optimal (θ, ω) for Case 1, and a good combination

of (θ, ω) for Case 2.
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4.5.1. The optimal ω

Lemma 7. Assume that we have two choices of ω, say, ω1 and ω2, such that for all355

θ ∈ [0, 1], both K1 and K2 are smaller for ω1 than ω2. Then ω1 is a better choice than

ω2.

Proof. For all θ ∈ [0, 1], we have

K1(θ, ω1) ≤ K1(θ, ω2)

and K2(θ, ω1) ≤ K2(θ, ω2).

By the definition of U(θ, ω) in (39) (provided K1 +K2 < 1 in both choices of param-

eters) U(θ, ω1) ≤ U(θ, ω2) for all θ ∈ [0, 1]. Hence the result.

Lemma 8. The optimal ω for all θ in [0, 1] in both the cases (see Theorem 2) lies in360

the range [1, ω?].

Proof. First we show how K1 and K2 behave for both the cases in the range ω ∈ [0, 1]

and ω ∈ [ω?,∞). Define s(ω) := (1−ω(2−ω)λ+min) and t(ω) := (1−ω(2−ω)λmax).

Case 1:

(i) For 0 ≤ ω ≤ 1 and α(ω) = 1− ωλ+min:365

0 21 ω?ω

K1(θ, ω) := (1−θ)(1−θ+θα(ω)), K2(θ, ω) := θ(θ (1− ω(2− ω)λ+min)︸ ︷︷ ︸
s(ω)

+(1−θ)α(ω)).

(41)

We see that both α(ω) and s(ω) are monotonically decreasing in the interval

ω ∈ [0, 1]. Hence, both K1 and K2 are monotonically decreasing in ω ∈ [0, 1].

(ii) For ω? ≤ ω ≤ 2 and α(ω) = ωλmax − 1:370

0 21 ω? ω
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K1(θ, ω) := (1−θ)(1−θ+θα(ω)), K2(θ, ω) := θ(θ (1− ω(2− ω)λ+min)︸ ︷︷ ︸
s(ω)

+(1−θ)α(ω)).

Again, both α(ω) and s(ω) are monotonically increasing in the interval ω ∈

[ω?, 2]. Hence, both K1 and K2 are monotonically increasing in ω ∈ [ω?, 2].

(iii) For ω ≥ 2 and α(ω) = ωλmax − 1:375

0 21 ω? ω

K1(θ, ω) := (1−θ)(1−θ+θα(ω)), K2(θ, ω) := θ(θ (1− ω(2− ω)λmax)︸ ︷︷ ︸
t(ω)

+(1−θ)α(ω)).

Again, both α(ω) and t(ω) are monotonically increasing in the interval ω ∈

[2,∞). Hence, both K1 and K2 are monotonically increasing in ω ∈ [2,∞).

Case 2:380

(i) For 0 ≤ ω ≤ 1 and α(ω) = 1− ωλ+min:

0 2 ω?1ω

K1(θ, ω) := (1−θ)(1−θ+θα(ω)), K2(θ, ω) := θ(θ (1− ω(2− ω)λ+min)︸ ︷︷ ︸
s(ω)

+(1−θ)α(ω)).

(42)

Similar to case 1, both α(ω) and s(ω) are monotonically decreasing in the in-

terval ω ∈ [0, 1]. Hence, both K1 and K2 are monotonically decreasing in385

ω ∈ [0, 1].

(ii) For ω ≥ ω? and α(ω) = ωλmax − 1:
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𝜃 = 0 𝜃 = 1

𝜔 = 𝜔∗

𝜔 = 1

𝜔 = 2

(a)

𝜃 = 0 𝜃 = 1

𝜔 = 𝜔∗

𝜔 = 1

𝜔 = 2

(b)
Figure 2: The region of interest (θ, ω) = [0, 1] × [1, ω?] is shaded– (a) Case 1: ω? ≤ 2, that is,

λ+
min + λmax ≥ 1, (b) Case 2: ω? ≥ 2, that is, λ+

min + λmax ≤ 1.

0 2 ω? ω

K1(θ, ω) := (1−θ)(1−θ+θα(ω)), K2(θ, ω) := θ(θ (1− ω(2− ω)λmax)︸ ︷︷ ︸
t(ω)

+(1−θ)α(ω)).

Again, both α(ω) and t(ω) are monotonically increasing in the interval ω ∈390

[ω?,∞). Hence, both K1 and K2 are monotonically increasing in ω ∈ [ω?,∞).

Now, for both the cases, for all θ ∈ [0, 1] we have the following:

ω ≤ 1 : Both K1 and K2 monotonically decrease till ω = 1, then from Lemma 7, 1 is

the optimal ω in [0, 1]. (Note that ω? is always greater than or equal to 1.)

ω ≥ ω? : Both K1 and K2 monotonically increase after ω = ω?, then from remark 7, ω?395

is the optimal ω in [ω?,∞).

Thus, the optimal ω for all θ ∈ [0, 1] in both the cases lies in the range [1, ω?].

Thus Lemma 8 shows us that we only need to constrain ourselves in θ ∈ [0, 1] and

ω ∈ [1, ω?] for finding the minimum value of U(θ, ω).

4.5.2. Upper bound on U(θ, ω) for Case 1400

As we proved in Lemma 8, we only need to focus in the region ω ∈ [1, ω?]. See

Figure 2a. From (23) we have:
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K1(θ, ω) := (1−θ)2+θ(1−θ)(1−ωλ+min), K2(θ, ω) := θ2
(
1− ω(2− ω)λ+min

)
+θ(1−θ)(1−ωλ+min).

(43)

Substituting the values of K1 and K2 in (39), we have

U(θ, ω) =
θ
(
1 + (1− θ)ωλ+min

)
+ 1

δ

θω (2− θω)λ+min

. (44)

Now we compute ∇U and find:

∂U

∂θ
=
θ2ωδ

(
1 + (ω − 2)λ+min

)
+ 2 (θω − 1)

θ2ωδ (2− θω)
2
λ+min

. (45)

Setting ∂U
∂θ = 0 we have

θ2ωδ
(
1 + (ω − 2)λ+min

)
+ 2 (θω − 1) = 0, (46)

which implies

θ2
(
ωδ + ω2δλ+min − 2ωδλ+min

)
+ θ (2ω)− 2 = 0. (47)

Similarly,

∂U

∂ω
=

2δθ (θω − 1) + δθ2ω2 (1− θ)λ+min + 2 (θω − 1)

θω2δ (2− θω)
2
λ+min

, (48)

and setting ∂U
∂ω = 0 gives

2δθ (θω − 1) + δθ2ω2 (1− θ)λ+min + 2 (θω − 1) = 0, (49)

which implies

θ3
(
−ω2δλ+min

)
+ θ2

(
ω2δλ+min + 2ωδ

)
+ θ (2ω − 2δ)− 2 = 0. (50)

For the gradient∇U to vanish inside the region of interest (ω ∈ (1, ω?) and θ ∈ (0, 1)),

we want both equations (47) as well as (50) to hold. We try to find out the solutions of:

(47) − (50) = 0, as any solution satisfying both equations (47) and (50) also satisfies

(47)− (50) = 0. Therefore, we have

(47)− (50) = θ3
(
ω2δλ+min

)
+ θ2

(
−2ωδλ+min − ωδ

)
+ 2θδ (51)

= δθ
(
λ+minθ

2ω2 −
(
2λ+min + 1

)
θω + 2

)︸ ︷︷ ︸
A quadratic in θω

. (52)
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One solution of (47) − (50) = 0 from above is θ = 0, which does not lie inside the

region of interest. Next we focus on the quadratic:

λ+minθ
2ω2 −

(
2λ+min + 1

)
θω + 2 = 0, (53)

that is,

λ+min

(
θω − 1

λ+min

)
(θω − 2) = 0, (54)

which gives the solution θω = 1
λ+
min

and θω = 2. The maximum value of θω attainable

in the region of interest is ω?, for θ = 1 and ω = ω?. Hence θω = 1
λ+
min

is not405

attainable inside the region of interest. Also, as we are dealing with Case 1, ω? ≤ 2,

hence θω = 2 is also not attainable inside the region of interest. Thus,∇U does not

vanish inside the region of interest. Therefore, the minima lies on the boundary of the

region. We now discuss following four boundary cases:

θ = 0. U is not defined.410

θ = 1. We have

U(1, ω) =
1 + 1

δ

ω(2− ω)λ+min︸ ︷︷ ︸
minimized at ω=1

=⇒ U(1, 1) =
1 + 1

δ

λ+min

.

We note that U(1, ω) > 1
λ+
min

for all δ.

ω = 1. Let θ1 = argmin
θ

U(θ, 1). Then θ1 is the solution of equation (47) at ω = 1.

Substituting ω = 1 in (47) we get the following quadratic in θ

θ2δ(1− λ+min) + 2θ − 2 = 0. (55)

As we want θ in [0, 1] and find

θ1 =

√
1 + 2δ(1− λ+min)− 1

δ(1− λ+min)
. (56)

Therefore,

U(θ1, 1) =
3
4 +

1+
√

1+2δ(1−λ+
min)

4δ

λ+min

. (57)
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Note that for δ ≥ 4, U(θ1, 1) ≤ 1
λ+
min

. Thus, when cτ ≥ 4, the asynchronous parallel

method performs better than the basic method for Case 1.

ω = ω?. Let θω? = argmin
θ

U(θ, ω?). Then we get θω? as:

θω? =
k(
√

1 + δ(2− k)− 1)

δ(2− k)
(k = λ+min + λmax). (58)

Therefore,

U(θω? , ω
?) =

k
4 +

λ+
min

2 +

√
1+δ(2−k)+2(δ+1+δ(1−k)λ+

min)

2δ
√

1+δ(2−k)

λ+min

(59)

=

3λ+
min+λmax

4 +

√
1+δ(2−k)+2(δ+1+δ(1−k)λ+

min)

2δ
√

1+δ(2−k)

λ+min

. (60)

Therefore, in Case 1, the optimal parameter combination is (θ1, 1) or (θω? , ω
?).415

This leads us to the below result.

Theorem 4. If λ+min+λmax ≥ 1. The quantities, χaopt(δ), Pδ, U(θ1, 1) andU(θω? , ω
?)

are given in equations (38), (35), (57) and (60), respectively. If APSGD (Algorithm 1)

runs for

T ≥ δ ·min (U(θ1, 1), U(θω? , ω
?)) log

(
1

ε

)
+ δ ≥ χaopt(δ) log

(
1

ε

)
+ δ

iterations, then we have E
[
‖xT − x?‖2B

]
≤ εPδ,

4.5.3. Upper bound on U(θ, ω) for Case 2

We split the interval into two parts: ω ∈ [1, 2] and ω ∈ [2, ω?]. See Figure 2b.

Part 1 : ω ∈ [1, 2]. K1(θ, ω) and K1(θ, ω) are the same as described in equation (43).420

Similar to the Case 1, we find that∇U does not vanish inside the region θ ∈ (0, 1) and

ω ∈ (1, 2). Therefore, the minima lies on the boundary of the region. We now discuss

four boundary cases:

θ = 0. U is not defined.

θ = 1. We have

U(1, ω) =
1 + 1

δ

ω(2− ω)λ+min︸ ︷︷ ︸
minimized at ω=1

=⇒ U(1, 1) =
1 + 1

δ

λ+min

.
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We note that U(1, ω) > 1
λ+
min

for all δ.425

ω = 1. Let θ1 = argmin
θ

U(θ, 1). Then we get θ1 as:

θ1 =

√
1 + 2δ(1− λ+min)− 1

δ(1− λ+min)
. (61)

Therefore,

U(θ1, 1) =
3
4 +

1+
√

1+2δ(1−λ+
min)

4δ

λ+min

. (62)

We note that for δ ≥ 4, U(θ1, 1) ≤ 1
λ+
min

.

ω = 2. Let θ2 = argmin
θ

U(θ, 2). Then we get θ2 as:

θ2 =

√
δ + 1− 1

δ
. (63)

Therefore,

U(θ2, 2) =
1
4 +

λ+
min

2 + 1+
√
δ+1

2δ

λ+min

. (64)

We note that for δ ≥ 3, U(θ2, 2) ≤ 1
λ+
min

. Thus, for cτ ≥ 3, the asynchronous parallel

method performs better than the basic method for Case 2.

Lemma 9. For Case 2,

U(θ2, 2) ≤ U(θ1, 1) ≤ U(1, 1), for all δ ≥ 4. (65)

Proof. The first inequality follows from the fact that λ+min ≤ 1
2 for Case 2 (as λ+min +

λmax ≤ 1). The second follows from the fact that U(1, ω) is always greater than 1
λ+
min

430

for all δ, whereas U(θ1, 1) is smaller than 1
λ+
min

for δ ≥ 4.

Thus, in Case 2, the optimal stepsize is ω = 2 for ω ∈ [1, 2]. This leads us to the

following result:

Theorem 5. Let λ+min +λmax ≤ 1. The quantities, χaopt(δ) and Pδ are defined in (38)

and (35), respectively. If APSGD (Algorithm 1) runs for

T ≥
1
4 +

λ+
min

2 + 1+
√
δ+1

2δ

λ+min

δ log

(
1

ε

)
+ δ ≥ χaopt(δ) log

(
1

ε

)
+ δ

iterations, then we have E
[
‖xT − x?‖2B

]
≤ εPδ .
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Part 2: ω ∈ [2, ω?]. We were not able to find the optimal stepsize θ for Case 2 in435

ω ∈ [2, ω?]. However, the iteration complexity for ω = 2 is a non-trivial and significant

result.

5. Comparison between APSGD and SPSGD

We now compare APSGD and SPSGD. Note that APSGD has two benefits over

SPSGD:440

• Intra-iteration gain: The fast workers do not stay idle waiting for the slow

workers in APSGD. In contrast, all workers except the slowest stay idle in SPSGD.

The slowness can be attributed to less processing power, or/and due to processing

a “tougher” job in terms of time complexity, or slower communication between

this worker and the master.445

• Inter-iteration gain: There is no synchronization barrier in APSGD. Even

when all the workers are equally fast, workers stay idle in SPSGD during the

gradient aggregation phase. In contrast, no such phase exists in APSGD – all

workers except the one synchronizing with the master are busy in APSGD.

SPSGD takes one step after averaging τ gradient computations, one by each worker.450

On the other hand, APSGD takes one step after every gradient computation. To com-

pare SPSGD and APSGD, we assume time equivalence between one step of SPSGD

and δ steps of APSGD; see Figure 1. We note this setting only considers the intra-

iteration gain of APSGD due to the synchronization barrier every δ steps. Thus,

APSGD is expected to perform even better without the synchronization barrier, but455

we do not consider that in our setting.

With the above time equivalence, we compare between χsopt(τ) and
χaopt (δ)

δ . We

note that we ignore the δ iteration offset in Theorem 4 and Theorem 5 for the ease of

exposition. We denote the maximum delay observed by APSGD as δ = cτ , where

c ≥ 1. We perform two types of comparisons: (i) asymptotic comparison, where we460

compare if APSGD has faster convergence than SPSGD as the number of processors

τ → ∞; (ii) non-asymptotic comparison, where we determine the exact number of
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processors after which APSGD performs better than SPSGD. Surprisingly, for many

ill-conditioned problems for SPSGD, this number is in the order of ten or less.

5.1. Asymptotic comparison465

We know from (12) that the best iteration complexity χsopt(τ) of the synchronous

parallel method is

χsopt(τ) =
1
τ +

(
1− 1

τ

)
λmax

λ+min

.

Rearranging the above equation we get

χsopt(τ) =
λmax + 1−λmax

τ

λ+min

. (66)

Therefore,

lim
τ→∞

χsopt(τ) =
λmax

λ+min

. (67)

We now derive the normalized asymptotic iteration complexity of APSGD and

compare with the iteration complexity of SPSGD. Since the iteration complexity of

APSGD depends on whether (λ+min + λmax) is less than or greater than 1, we consider

both cases separately.

5.1.1. Case 1470

Substituting δ = cτ in equation (60) we get

χa(θω? , ω
?, τ, c)

cτ
=

3λ+
min+λmax

4 +

√
1+cτ(2−k)+2(cτ+1+cτ(1−k)λ+

min)

2cτ
√

1+cτ(2−k)

λ+min

. (k = λ+min + λmax).

(68)

Therefore,

lim
τ→∞

χa(θω? , ω
?, τ, c)

cτ
=

3
4λ

+
min + λmax

4

λ+min

. (69)

Thus, comparing equations (67) and (69), we find out that APSGD has faster asymp-

totic convergence than SPSGD in Case 1 (when (λ+min + λmax) ∈ [1, 2]).

5.1.2. Case 2

Similarly for Case 2, from (64) we get

χa(θ2, 2, τ, c)

cτ
=

1
4 +

λ+
min

2 + 1+
√
cτ+1

2cτ

λ+min

. (70)

30



λ+min λmax λ+min + λmax κ τmin

δ = τ δ = 1.5τ δ = 2τ

(c = 1) (c = 1.5) (c = 2)

10−1 0.9 1 9 5 3 3

10−2 0.99 1 99 4 3 2

10−3 0.999 1 999 4 3 2

10−4 0.9999 1 9999 4 3 2

2× 10−1 0.8 1 4 7 5 4

Table 2: Case 1: λ+min + λmax ≥ 1. Minimum number of processors, τmin required for APSGD to have

faster convergence than SPSGD for different problem instances and maximum delay δ. We assume APSGD

has δ updates in the time SPSGD has one update (See Figure 1).

Therefore,

lim
τ→∞

χa(θ2, 2, τ, c)

cτ
=

1
4 +

λ+
min

2

λ+min

. (71)

Finally, comparing equations (66) and (71), we find out that APSGD has faster asymp-

totic convergence than SPSGD in Case 2 (when (λ+min+λmax) ∈ [0, 1]) and 1
4 +

λ+
min

2 ≤475

λmax hold.

5.2. Non asymptotic comparison

As the above comparisons are asymptotic, we determine when exactly APSGD is

better to use than SPSGD. For given combinations of λ+min, λmax and c, we compute

the minimum number of processors, τmin, for which the APSGD has better iteration480

complexity than SPSGD. We have considered c ∈ {1, 1.5, 2}, and various values of

interest for λ+min and λmax. Denote κ = λmax

λ+
min

. κ is the condition number for SPSGD,

and (67) shows us that the larger κ is, the higher the iteration complexity of SPSGD.

Throughout, c = 1 corresponds to when the synchronous variant does not suffer from

idle time due to load imbalance within phases.485
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λ+min λmax λ+min + λmax κ τmin

δ = τ δ = 1.5τ δ = 2τ

(c = 1) (c = 1.5) (c = 2)

10−2 0.4 0.41 40 12 5 2

10−2 0.3 0.31 30 116 66 40

10−2 0.27 0.28 27 1082 688 491

10−2 0.26 0.27 26 9905 6504 4803

10−3 0.4 0.401 400 11 5 2

10−3 0.3 0.301 300 95 54 31

10−3 0.27 0.271 270 635 398 278

10−3 0.26 0.261 260 2721 1761 1281

10−4 0.4 0.4001 4000 11 5 2

10−4 0.3 0.3001 3000 94 52 31

10−4 0.27 0.2701 2700 606 379 265

10−4 0.26 0.2601 2600 2478 1602 1163

10−5 0.4 0.40001 40000 11 5 2

10−5 0.3 0.30001 30000 93 52 31

10−5 0.27 0.27001 27000 604 377 264

10−5 0.26 0.26001 26000 2456 1587 1152

Table 3: Case 2: λ+min + λmax ≤ 1. Minimum number of processors, τmin required for APSGD to have

faster convergence than SPSGD for different problem instances and maximum delay δ. We assume APSGD

has δ updates in the time SPSGD has one update (See Figure 1).
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5.2.1. Case 1

Table 2 refers to the first case, when λ+min + λmax ≥ 1. We also add a column for

the SPSGD condition number, κ. We notice that APSGD has a small τmin even for

highly ill conditioned problems (κ ∼ 104) in Case 1.

5.2.2. Case 2490

Table 3 refers to the second case, when λ+min + λmax ≤ 1. We note that SPSGD

is always better when 1
4 +

λ+
min

2 > λmax. Thus, in order to consider other cases,

all the linear systems below satisfy 1
4 +

λ+
min

2 ≤ λmax. We vary λ+min in log-scale,

λmax ∈ {0.4, 0.3, 0.27, 0.26}, and c ∈ {1, 1.5, 2}.

• Effect of varying λmax. We observe that APSGD has small τmin even for highly495

ill-conditioned problems if λmax is reasonably larger than 1
4+

λ+
min

2 . For example,

when λmax = 0.4, we have τmin = 2 for c = 2 and τ = 11 for c = 1 (for both

cases, κ = 40000). Fixing c = 2, for each value of λ+min, we observe that τmin

increases from 2 for λmax = 0.4 to values in thousands for λmax = 0.26.

• Effect of varying λ+min. We observe that for the same λmax, the smaller the500

λ+min is, the smaller τmin is. That is, for the same λmax, APSGD requires less

processors to beat its synchronous counterpart for more ill-conditioned prob-

lems. For example, for λmax = 0.27 and c = 2, we have τmin = 491 when

λ+min = 10−2 (in this case, κ = 27); but τmin = 264 when λ+min = 10−5 (in this

case κ = 27000).505

• Effect of varying c. We also observe that increasing c from 1 to 2 significantly

brings down τmin. This intuitively makes sense and follows our setup—as c

increases, APSGD performs more steps while SPSGD performs one step.
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6. Notation Glossary

The Basics

A, b m× n matrix and m× 1 vector defining the system Ax = b Related to

L {x : Ax = b} (solution set of the linear system) stochastic re-

formulation

B n× n symmetric positive definite matrix of the linear

〈x, y〉B x>By (B-inner product) system (see

(5))

‖x‖B
√
〈x, x〉B (Norm induced by B-inner product)

M† Moore-Penrose pseudoinverse of matrix M
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S a random real matrix with m rows

D distribution from which matrix S is drawn

H H = S(S>AB−1A>S)†S>

Z A>HA

Im(M) Image (range) space of matrix M

Null(M) Null space of matrix M

E [·] expectation

Projections

ΠB
L (x) projection of x onto the set L in the B-norm

B−1Z projection matrix in the B-norm onto Im(B−1A>S)

Optimization

x? a solution of the linear system Ax = b Assumption 1

fS,∇fS,∇2fS stochastic function, its gradient and Hessian, respectively

LS {x : S>Ax = S>b} (set of minimizers of fS)

f E [fS]

∇f gradient of f with respect to the B-inner product

∇2f B−1E [Z] (Hessian of f in the B-inner product)

Eigenvalues

W B−
1
2E [Z]B−

1
2 (psd matrix with the same spectrum as∇2f )

λ1, . . . , λn eigenvalues of W

Λ Diag(λ1, . . . , λn) (diagonal matrix of eigenvalues)

U [u1, . . . , un] (eigenvectors of W)

UΛU> eigenvalue decomposition of W

λmax, λ
+
min largest and smallest nonzero eigenvalues of W

Algorithms

θ damping parameter

ω stepsize / relaxation parameter

ω? 2
(λ+min + λmax)

Theorem 2

τ number of processors in the assembly

δt delay between the master and a particular worker processor
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δ(= cτ) maximum delay for APSGD

For particular values of θ , ω and δ:

α(ω) maxi:λi>0 |1− ωλi| Theorem 2

K1(θ, ω),

K2(θ, ω)

coefficient of E
[
‖rt‖2]

]
and E

[
‖rt−δt‖2

]
respectively in Theo-

rem 2

Theorem 2

βa(θ, ω, δ) rate of convergence of the asynchronous parallel SGD

βaopt(δ) optimal rate of convergence of the asynchronous parallel SGD

χa(θ, ω, δ) iteration complexity of the asynchrous parallel SGD

χaopt(δ) optimal iteration complexity of the asynchrous parallel SGD

Pδ max
(
‖xδ − x?‖2B, βaopt(δ)‖xδ−1 − x?‖2B, . . . , βaopt(δ)δ‖x0 − x?‖2B

)
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